IMO Shortlist 2016 problem A8


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 9,0
Dodao/la: arhiva
3. listopada 2019.
LaTeX PDF

Find the largest real constant a such that for all n \geq 1 and for all real numbers x_0, x_1, ... , x_n satisfying 0 = x_0 < x_1 < x_2 < \cdots < x_n we have \frac{1}{x_1-x_0} + \frac{1}{x_2-x_1} + \dots + \frac{1}{x_n-x_{n-1}} \geq a \left( \frac{2}{x_1} + \frac{3}{x_2} + \dots + \frac{n+1}{x_n} \right)

Izvor: https://www.imo-official.org/problems/IMO2016SL.pdf