IMO Shortlist 2016 problem G2


Kvaliteta:
  Avg: 3,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
3. listopada 2019.
LaTeX PDF

Let ABC be a triangle with circumcircle \Gamma and incenter I and let M be the midpoint of \overline{BC}. The points D, E, F are selected on sides \overline{BC}, \overline{CA}, \overline{AB} such that \overline{ID} \perp \overline{BC}, \overline{IE}\perp \overline{AI}, and \overline{IF}\perp \overline{AI}. Suppose that the circumcircle of \triangle AEF intersects \Gamma at a point X other than A. Prove that lines XD and AM meet on \Gamma.

Izvor: https://www.imo-official.org/problems/IMO2016SL.pdf



Komentari:

Cini se da se jedino moze length bashem rijesiti. :(

ABCD tetivan, E presjek dijagonala \rightarrow \frac{AE}{CE}=\frac{AB*AD}{CB*CD} (preko sinusa ili povrsina) je potrebna lemma.

zapravo ak samo razmisljas o omjerima moze se rijesit u 2min

Zadnja promjena: binkret, 27. svibnja 2022. 14:35