IMO Shortlist 2016 problem G8


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 9,0

Let A_1, B_1 and C_1 be points on sides BC, CA and AB of an acute triangle ABC respectively, such that AA_1, BB_1 and CC_1 are the internal angle bisectors of triangle ABC. Let I be the incentre of triangle ABC, and H be the orthocentre of triangle A_1B_1C_1. Show that AH + BH + CH \geq AI + BI + CI.

Izvor: https://www.imo-official.org/problems/IMO2016SL.pdf