IMO Shortlist 2016 problem N6
Dodao/la:
arhiva3. listopada 2019. Denote by $\mathbb{N}$ the set of all positive integers. Find all functions $f:\mathbb{N}\rightarrow \mathbb{N}$ such that for all positive integers $m$ and $n$, the integer $f(m)+f(n)-mn$ is nonzero and divides $mf(m)+nf(n)$.
Izvor: https://www.imo-official.org/problems/IMO2016SL.pdf