IMO Shortlist 2016 problem N7


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 9,0
Dodao/la: arhiva
3. listopada 2019.
LaTeX PDF

Let P=A_1A_2\cdots A_k be a convex polygon in the plane. The vertices A_1, A_2, \ldots, A_k have integral coordinates and lie on a circle. Let S be the area of P. An odd positive integer n is given such that the squares of the side lengths of P are integers divisible by n. Prove that 2S is an integer divisible by n.

Izvor: https://www.imo-official.org/problems/IMO2016SL.pdf