IMO Shortlist 2017 problem A1
Dodao/la:
arhiva3. listopada 2019. Let $a_1,a_2,\ldots a_n,k$, and $M$ be positive integers such that
$$\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}=k\quad\text{and}\quad a_1a_2\cdots a_n=M.$$If $M>1$, prove that the polynomial
$$P(x)=M(x+1)^k-(x+a_1)(x+a_2)\cdots (x+a_n)$$has no positive roots.
Izvor: https://www.imo-official.org/problems/IMO2017SL.pdf