IMO Shortlist 2017 problem A5
Dodao/la:
arhiva3. listopada 2019. An integer $n \geq 3$ is given. We call an $n$-tuple of real numbers $(x_1, x_2, \dots, x_n)$ Shiny if for each permutation $y_1, y_2, \dots, y_n$ of these numbers, we have
$$\sum \limits_{i=1}^{n-1} y_i y_{i+1} = y_1y_2 + y_2y_3 + y_3y_4 + \cdots + y_{n-1}y_n \geq -1.$$Find the largest constant $K = K(n)$ such that
$$\sum \limits_{1 \leq i < j \leq n} x_i x_j \geq K$$holds for every Shiny $n$-tuple $(x_1, x_2, \dots, x_n)$.
Izvor: https://www.imo-official.org/problems/IMO2017SL.pdf