IMO Shortlist 2017 problem A5


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 8,0
Dodao/la: arhiva
3. listopada 2019.
LaTeX PDF

An integer n \geq 3 is given. We call an n-tuple of real numbers (x_1, x_2, \dots, x_n) Shiny if for each permutation y_1, y_2, \dots, y_n of these numbers, we have \sum \limits_{i=1}^{n-1} y_i y_{i+1} = y_1y_2 + y_2y_3 + y_3y_4 + \cdots + y_{n-1}y_n \geq -1.Find the largest constant K = K(n) such that \sum \limits_{1 \leq i < j \leq n} x_i x_j \geq Kholds for every Shiny n-tuple (x_1, x_2, \dots, x_n).

Izvor: https://www.imo-official.org/problems/IMO2017SL.pdf