IMO Shortlist 2017 problem A7


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 9,0
Dodao/la: arhiva
3. listopada 2019.
LaTeX PDF

Let a_0,a_1,a_2,\ldots be a sequence of integers and b_0,b_1,b_2,\ldots be a sequence of positive integers such that a_0=0,a_1=1, and a_{n+1} =
        \begin{cases}
            a_nb_n+a_{n-1} & \text{if $b_{n-1}=1$} \\
            a_nb_n-a_{n-1} & \text{if $b_{n-1}>1$}
        \end{cases}\qquad\text{for }n=1,2,\ldots.for n=1,2,\ldots. Prove that at least one of the two numbers a_{2017} and a_{2018} must be greater than or equal to 2017.

Izvor: https://www.imo-official.org/problems/IMO2017SL.pdf