IMO Shortlist 2017 problem A8


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 9.0
Dodao/la: arhiva
Oct. 3, 2019
LaTeX PDF

A function f:\mathbb{R} \to \mathbb{R} has the following property: \text{For every } x,y \in \mathbb{R} \text{ such that }(f(x)+y)(f(y)+x) > 0, \text{ we have } f(x)+y = f(y)+x.Prove that f(x)+y \leq f(y)+x whenever x>y.

Source: https://www.imo-official.org/problems/IMO2017SL.pdf