IMO Shortlist 2017 problem N1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
3. listopada 2019.
LaTeX PDF

For each integer a_0 > 1, define the sequence a_0, a_1, a_2, \ldots for n \geq 0 as a_{n+1} =
\begin{cases}
\sqrt{a_n} & \text{if } \sqrt{a_n} \text{ is an integer,} \\
a_n + 3 & \text{otherwise.}
\end{cases}Determine all values of a_0 such that there exists a number A such that a_n = A for infinitely many values of n.

Izvor: https://www.imo-official.org/problems/IMO2017SL.pdf