IMO Shortlist 2017 problem N7


Kvaliteta:
  Avg: 4,0
Težina:
  Avg: 9,0
Dodao/la: arhiva
3. listopada 2019.
LaTeX PDF

An ordered pair (x, y) of integers is a primitive point if the greatest common divisor of x and y is 1. Given a finite set S of primitive points, prove that there exist a positive integer n and integers a_0, a_1, \ldots , a_n such that, for each (x, y) in S, we have: a_0x^n + a_1x^{n-1} y + a_2x^{n-2}y^2 + \cdots + a_{n-1}xy^{n-1} + a_ny^n = 1.

Izvor: https://www.imo-official.org/problems/IMO2017SL.pdf