IMO Shortlist 2017 problem N8


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 9,0
Dodao/la: arhiva
3. listopada 2019.
LaTeX PDF

Let p be an odd prime number and \mathbb{Z}_{>0} be the set of positive integers. Suppose that a function f:\mathbb{Z}_{>0}\times\mathbb{Z}_{>0}\to\{0,1\} satisfies the following properties: \begin{itemize}
\item $f(1,1)=0$;
\item $f(a,b)+f(b,a)=1$ for any pair of relatively prime positive integers $a,b$ not both equal
to 1;
\item $f(a+b,b)=f(a,b)$ for any pair of relatively prime positive integers $(a,b)$.
\end{itemize} Prove that \sum_{n=1}^{p-1}f(n^2,p) \geqslant \sqrt{2p}-2.

Izvor: https://www.imo-official.org/problems/IMO2017SL.pdf