IMO Shortlist 2018 problem A2
Dodao/la:
arhiva3. listopada 2019. Find all integers $n \geq 3$ for which there exist real numbers $a_1, a_2, \dots a_{n + 2}$ satisfying $a_{n + 1} = a_1$, $a_{n + 2} = a_2$ and
$$a_ia_{i + 1} + 1 = a_{i + 2},$$for $i = 1, 2, \dots, n$.
Izvor: https://www.imo-official.org/problems/IMO2018SL.pdf