IMO Shortlist 2018 problem A3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 7,0
Dodao/la: arhiva
3. listopada 2019.
LaTeX PDF

Given any set S of postive integers, show that at least one of the following two assertions holds:

(1) There exist distinct finite subsets F and G of S such that \sum_{x\in F}1/x=\sum_{x\in G}1/x;

(2) There exists a positive rational number r<1 such that \sum_{x\in F}1/x\neq r for all finite subsets F of S.

Izvor: https://www.imo-official.org/problems/IMO2018SL.pdf