IMO Shortlist 2018 problem A6
Dodao/la:
arhiva3. listopada 2019. Let $m,n\geq 2$ be integers. Let $f(x_1,\dots, x_n)$ be a polynomial with real coefficients such that $$f(x_1,\dots, x_n)=\left\lfloor \frac{x_1+\dots + x_n}{m} \right\rfloor\text{ for every } x_1,\dots, x_n\in \{0,1,\dots, m-1\}.$$Prove that the total degree of $f$ is at least $n$.
Izvor: https://www.imo-official.org/problems/IMO2018SL.pdf