IMO Shortlist 2018 problem G6
Dodao/la:
arhiva3. listopada 2019. A convex quadrilateral $ABCD$ satisfies $AB\cdot CD = BC\cdot DA$. Point $X$ lies inside $ABCD$ so that \[\angle{XAB} = \angle{XCD}\quad\,\,\text{and}\quad\,\,\angle{XBC} = \angle{XDA}.\]Prove that $\angle{BXA} + \angle{DXC} = 180^\circ$.
Izvor: https://www.imo-official.org/problems/IMO2018SL.pdf