IMO Shortlist 2018 problem N4


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 7,0
Dodao/la: arhiva
3. listopada 2019.
LaTeX PDF

Let a_1, a_2, \ldots be an infinite sequence of positive integers. Suppose that there is an integer N > 1 such that, for each n \geq N, the number \frac{a_1}{a_2} + \frac{a_2}{a_3} + \cdots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1}is an integer. Prove that there is a positive integer M such that a_m = a_{m+1} for all m \geq M.

Izvor: https://www.imo-official.org/problems/IMO2018SL.pdf