IMO Shortlist 2018 problem N6
Dodao/la:
arhiva3. listopada 2019. Let $f : \{ 1, 2, 3, \dots \} \to \{ 2, 3, \dots \}$ be a function such that $f(m + n) | f(m) + f(n) $ for all pairs $m,n$ of positive integers. Prove that there exists a positive integer $c > 1$ which divides all values of $f$.
Izvor: https://www.imo-official.org/problems/IMO2018SL.pdf