IMO Shortlist 2018 problem N6


Kvaliteta:
  Avg: 5,0
Težina:
  Avg: 8,0
Dodao/la: arhiva
3. listopada 2019.
LaTeX PDF

Let f : \{ 1, 2, 3, \dots \} \to \{ 2, 3, \dots \} be a function such that f(m + n) | f(m) + f(n) for all pairs m,n of positive integers. Prove that there exists a positive integer c > 1 which divides all values of f.

Izvor: https://www.imo-official.org/problems/IMO2018SL.pdf