IMO Shortlist 2013 problem A1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
21. rujna 2014.
LaTeX PDF
Let n be a positive integer and let a_1, \ldots, a_{n-1} be arbitrary real numbers. Define the sequences u_0, \ldots, u_n and v_0, \ldots, v_n inductively by u_0 = u_1 = v_0 = v_1 = 1, and 
  u_{k+1} = u_k + a_k u_{k-1}, \quad v_{k+1} = v_k + a_{n-k} v_{k-1}
for k = 1, \ldots, n - 1.
Prove that u_n = v_n.
Izvor: France