IMO Shortlist 1961 problem 2


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let a, b, c be the sides of a triangle, and S its area. Prove:
a^{2} + b^{2} + c^{2}\geq 4S \sqrt {3}
In what case does equality hold?
Izvor: Međunarodna matematička olimpijada, shortlist 1961