IMO Shortlist 1966 problem 59
Dodao/la:
arhiva2. travnja 2012. Let

be the lengths of the sides of a triangle, and

respectively, the angles opposite these sides. Prove that if

the triangle is isosceles.
%V0
Let $a,b,c$ be the lengths of the sides of a triangle, and $\alpha, \beta, \gamma$ respectively, the angles opposite these sides. Prove that if $$a+b=\tan{\frac{\gamma}{2}}(a\tan{\alpha}+b\tan{\beta})$$ the triangle is isosceles.
Izvor: Međunarodna matematička olimpijada, shortlist 1966