IMO Shortlist 1966 problem 59


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let a,b,c be the lengths of the sides of a triangle, and \alpha, \beta, \gamma respectively, the angles opposite these sides. Prove that if a+b=\tan{\frac{\gamma}{2}}(a\tan{\alpha}+b\tan{\beta}) the triangle is isosceles.
Izvor: Međunarodna matematička olimpijada, shortlist 1966