IMO Shortlist 1969 problem 67


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Given real numbers x_1,x_2,y_1,y_2,z_1,z_2 satisfying x_1>0,x_2>0,x_1y_1>z_1^2, and x_2y_2>z_2^2, prove that: {8\over(x_1+x_2)(y_1+y_2)-(z_1+z_2)^2}\le{1\over x_1y_1-z_1^2}+{1\over x_2y_2-z_2^2}. Give necessary and sufficient conditions for equality.
Izvor: Međunarodna matematička olimpijada, shortlist 1969