IMO Shortlist 1971 problem 13


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let A = (a_{ij}), where i,j = 1,2,\ldots,n, be a square matrix with all a_{ij} non-negative integers. For each i,j such that a_{ij} = 0, the sum of the elements in the ith row and the jth column is at least n. Prove that the sum of all the elements in the matrix is at least \frac {n^2}{2}.
Izvor: Međunarodna matematička olimpijada, shortlist 1971