IMO Shortlist 1971 problem 16


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let P_1 be a convex polyhedron with vertices A_1,A_2,\ldots,A_9. Let P_i be the polyhedron obtained from P_1 by a translation that moves A_1 to A_i. Prove that at least two of the polyhedra P_1,P_2,\ldots,P_9 have an interior point in common.
Izvor: Međunarodna matematička olimpijada, shortlist 1971