IMO Shortlist 1973 problem 10


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let a_1, \ldots, a_n be n positive numbers and 0 < q < 1. Determine n positive numbers b_1, \ldots, b_n so that:

a.) k < b_k for all k = 1, \ldots, n ,
b.) \displaystyle q < \frac{b_{k+1}}{b_{k}} < \frac{1}{q} for all k = 1, \ldots, n-1,
c.) \displaystyle \sum \limits^n_{k=1} b_k < \frac{1+q}{1-q} \cdot \sum \limits^n_{k=1} a_k.
Izvor: Međunarodna matematička olimpijada, shortlist 1973