IMO Shortlist 1977 problem 7


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let a,b,A,B be given reals. We consider the function defined by f(x) = 1 - a \cdot \cos(x) - b \cdot \sin(x) - A \cdot \cos(2x) - B \cdot \sin(2x). Prove that if for any real number x we have f(x) \geq 0 then a^2 + b^2 \leq 2 and A^2 + B^2 \leq 1.
Izvor: Međunarodna matematička olimpijada, shortlist 1977