IMO Shortlist 1978 problem 3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 5,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let m and n be positive integers such that 1 \le m < n. In their decimal representations, the last three digits of 1978^m are equal, respectively, so the last three digits of 1978^n. Find m and n such that m + n has its least value.
Izvor: Međunarodna matematička olimpijada, shortlist 1978