IMO Shortlist 1978 problem 6
Dodao/la:
arhiva2. travnja 2012. Let

be an injective function from

in itself. Prove that for any

we have:
%V0
Let $f$ be an injective function from ${1,2,3,\ldots}$ in itself. Prove that for any $n$ we have: $\sum_{k=1}^{n} f(k)k^{-2} \geq \sum_{k=1}^{n} k^{-1}.$
Izvor: Međunarodna matematička olimpijada, shortlist 1978