IMO Shortlist 1978 problem 6


Kvaliteta:
  Avg: 3,0
Težina:
  Avg: 5,0
Let f be an injective function from {1,2,3,\ldots} in itself. Prove that for any n we have: \sum_{k=1}^{n} f(k)k^{-2} \geq \sum_{k=1}^{n} k^{-1}.
Izvor: Međunarodna matematička olimpijada, shortlist 1978