IMO Shortlist 1979 problem 22
Kvaliteta:
Avg: 0,0Težina:
Avg: 0,0 Two circles in a plane intersect.
is one of the points of intersection. Starting simultaneously from
two points move with constant speed, each travelling along its own circle in the same sense. The two points return to
simultaneously after one revolution. Prove that there is a fixed point
in the plane such that the two points are always equidistant from





Izvor: Međunarodna matematička olimpijada, shortlist 1979