IMO Shortlist 1982 problem 1
Dodao/la:
arhiva2. travnja 2012. The function

is defined on the positive integers and takes non-negative integer values.

and for all

Determine

.
%V0
The function $f(n)$ is defined on the positive integers and takes non-negative integer values. $f(2)=0,f(3)>0,f(9999)=3333$ and for all $m,n:$ $$f(m+n)-f(m)-f(n)=0 \text{ or } 1.$$ Determine $f(1982)$.
Izvor: Međunarodna matematička olimpijada, shortlist 1982