IMO Shortlist 1982 problem 3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Consider infinite sequences \{x_n\} of positive reals such that x_0=1 and x_0\ge x_1\ge x_2\ge\ldots.

a) Prove that for every such sequence there is an n\ge1 such that: {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}\ge3.999.

b) Find such a sequence such that for all n: {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}<4.
Izvor: Međunarodna matematička olimpijada, shortlist 1982