IMO Shortlist 1983 problem 12
Dodao/la:
arhiva2. travnja 2012. Find all functions

defined on the set of positive reals which take positive real values and satisfy:

for all

; and

as

.
%V0
Find all functions $f$ defined on the set of positive reals which take positive real values and satisfy: $f(xf(y))=yf(x)$ for all $x,y$; and $f(x)\to0$ as $x\to\infty$.
Izvor: Međunarodna matematička olimpijada, shortlist 1983