IMO Shortlist 1984 problem 4


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let d be the sum of the lengths of all the diagonals of a plane convex polygon with n vertices (where n>3). Let p be its perimeter. Prove that:
n-3<{2d\over p}<\Bigl[{n\over2}\Bigr]\cdot\Bigl[{n+1\over 2}\Bigr]-2,
where [x] denotes the greatest integer not exceeding x.
Izvor: Međunarodna matematička olimpijada, shortlist 1984