IMO Shortlist 1985 problem 1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Given a set M of 1985 positive integers, none of which has a prime divisor larger than 26, prove that the set has four distinct elements whose geometric mean is an integer.
Izvor: Međunarodna matematička olimpijada, shortlist 1985