IMO Shortlist 1987 problem 20


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let n\ge2 be an integer. Prove that if k^2+k+n is prime for all integers k such that 0\le k\le\sqrt{n\over3}, then k^2+k+n is prime for all integers k such that 0\le k\le n-2.(IMO Problem 6)

Original Formulation

Let f(x) = x^2 + x + p, p \in \mathbb N. Prove that if the numbers f(0), f(1), \cdots , f(\sqrt{p\over 3} ) are primes, then all the numbers f(0), f(1), \cdots , f(p - 2) are primes.

Proposed by Soviet Union.
Izvor: Međunarodna matematička olimpijada, shortlist 1987