IMO Shortlist 1988 problem 9
Dodao/la:
arhiva2. travnja 2012. Let

and

be two positive integers such that

divides

. Show that

is a perfect square.
%V0
Let $a$ and $b$ be two positive integers such that $a \cdot b + 1$ divides $a^{2} + b^{2}$. Show that $\frac {a^{2} + b^{2}}{a \cdot b + 1}$ is a perfect square.
Izvor: Međunarodna matematička olimpijada, shortlist 1988