IMO Shortlist 1988 problem 26


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
A function f defined on the positive integers (and taking positive integers values) is given by:
\begin{matrix} f(1) = 1, f(3) = 3 \\ f(2n) = f(n) \\ f(4n + 1) = 2f(2n + 1) - f(n) \\ f(4n + 3) = 3f(2n + 1) - 2f(n)\text{,} \end{matrix}
for all positive integers n. Determine with proof the number of positive integers \leq 1988 for which f(n) = n.
Izvor: Međunarodna matematička olimpijada, shortlist 1988