IMO Shortlist 1989 problem 13


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABCD be a convex quadrilateral such that the sides AB, AD, BC satisfy AB = AD + BC. There exists a point P inside the quadrilateral at a distance h from the line CD such that AP = h + AD and BP = h + BC. Show that:
\frac {1}{\sqrt {h}} \geq \frac {1}{\sqrt {AD}} + \frac {1}{\sqrt {BC}}
Izvor: Međunarodna matematička olimpijada, shortlist 1989