IMO Shortlist 1990 problem 6


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Given an initial integer n_0 > 1, two players, {\mathcal A} and {\mathcal B}, choose integers n_1, n_2, n_3, \ldots alternately according to the following rules :

I.) Knowing n_{2k}, {\mathcal A} chooses any integer n_{2k + 1} such that
n_{2k} \leq n_{2k + 1} \leq n_{2k}^2.
II.) Knowing n_{2k + 1}, {\mathcal B} chooses any integer n_{2k + 2} such that
\frac {n_{2k + 1}}{n_{2k + 2}}
is a prime raised to a positive integer power.

Player {\mathcal A} wins the game by choosing the number 1990; player {\mathcal B} wins by choosing the number 1. For which n_0 does :


a.) {\mathcal A} have a winning strategy?
b.) {\mathcal B} have a winning strategy?
c.) Neither player have a winning strategy?
Izvor: Međunarodna matematička olimpijada, shortlist 1990