IMO Shortlist 1990 problem 11


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Chords AB and CD of a circle intersect at a point E inside the circle. Let M be an interior point of the segment EB. The tangent line at E to the circle through D, E, and M intersects the lines BC and AC at F and G, respectively. If
\frac {AM}{AB} = t,
find \frac {EG}{EF} in terms of t.
Izvor: Međunarodna matematička olimpijada, shortlist 1990