IMO Shortlist 1991 problem 4


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let \,ABC\, be a triangle and \,P\, an interior point of \,ABC\,. Show that at least one of the angles \,\angle PAB,\;\angle PBC,\;\angle PCA\, is less than or equal to 30^{\circ }.
Izvor: Međunarodna matematička olimpijada, shortlist 1991