IMO Shortlist 1991 problem 4


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 0.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Let \,ABC\, be a triangle and \,P\, an interior point of \,ABC\,. Show that at least one of the angles \,\angle PAB,\;\angle PBC,\;\angle PCA\, is less than or equal to 30^{\circ }.
Source: Međunarodna matematička olimpijada, shortlist 1991