IMO Shortlist 1992 problem 6


Kvaliteta:
  Avg: 3,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let \,{\mathbb{R}}\, denote the set of all real numbers. Find all functions \,f: {\mathbb{R}}\rightarrow {\mathbb{R}}\, such that f\left( x^{2}+f(y)\right) =y+\left( f(x)\right) ^{2}\hspace{0.2in}\text{for all}\,x,y\in \mathbb{R}.
Izvor: Međunarodna matematička olimpijada, shortlist 1992