IMO Shortlist 1992 problem 20


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
In the plane let \,C\, be a circle, \,L\, a line tangent to the circle \,C,\, and \,M\, a point on \,L. Find the locus of all points \,P\, with the following property: there exists two points \,Q,R\, on \,L\, such that \,M\, is the midpoint of \,QR\, and \,C\, is the inscribed circle of triangle \,PQR.
Izvor: Međunarodna matematička olimpijada, shortlist 1992