IMO Shortlist 1993 problem A7


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 9,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let n > 1 be an integer and let f(x) = x^n + 5 \cdot x^{n-1} + 3. Prove that there do not exist polynomials g(x),h(x), each having integer coefficients and degree at least one, such that f(x) = g(x) \cdot h(x).
Izvor: Međunarodna matematička olimpijada, shortlist 1993