IMO Shortlist 1993 problem G6


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 8,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
For three points A,B,C in the plane, we define m(ABC) to be the smallest length of the three heights of the triangle ABC, where in the case A, B, C are collinear, we set m(ABC) = 0. Let A, B, C be given points in the plane. Prove that for any point X in the plane,

m(ABC) \leq m(ABX) + m(AXC) + m(XBC).
Izvor: Međunarodna matematička olimpijada, shortlist 1993