IMO Shortlist 1994 problem A2


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let m and n be two positive integers. Let a_1, a_2, \ldots, a_m be m different numbers from the set \{1, 2,\ldots, n\} such that for any two indices i and j with 1\leq i \leq j \leq m and a_i + a_j \leq n, there exists an index k such that a_i + a_j = a_k. Show that
\frac {a_1 + a_2 + ... + a_m}{m} \geq \frac {n + 1}{2}.
Izvor: Međunarodna matematička olimpijada, shortlist 1994