IMO Shortlist 1994 problem N2
Dodao/la:
arhiva2. travnja 2012. Find all ordered pairs

where

and

are positive integers such that

is an integer.
%V0
Find all ordered pairs $(m,n)$ where $m$ and $n$ are positive integers such that $\frac {n^3 + 1}{mn - 1}$ is an integer.
Izvor: Međunarodna matematička olimpijada, shortlist 1994