IMO Shortlist 1995 problem G5


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 8,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABCDEF be a convex hexagon with AB = BC = CD and DE = EF = FA, such that \angle BCD = \angle EFA = \frac {\pi}{3}. Suppose G and H are points in the interior of the hexagon such that \angle AGB = \angle DHE = \frac {2\pi}{3}. Prove that AG + GB + GH + DH + HE \geq CF.
Izvor: Međunarodna matematička olimpijada, shortlist 1995