IMO Shortlist 1995 problem NC3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 7,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Determine all integers n > 3 for which there exist n points A_{1},\cdots ,A_{n} in the plane, no three collinear, and real numbers r_{1},\cdots ,r_{n} such that for 1\leq i < j < k\leq n, the area of \triangle A_{i}A_{j}A_{k} is r_{i} + r_{j} + r_{k}.
Izvor: Međunarodna matematička olimpijada, shortlist 1995